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Abstract

The cost and scale of training data collection remains a primary bottleneck in computer
vision. While many solutions have targeted model architectures and data pipelines, relatively
little progress has been made on replacing the most expensive part of the training loop: real-world
data. We argue that synthetic data is not merely a cheap alternative but a superior foundation
for training vision models. We introduce a taxonomy of synthetic data methods, compare their
trade-offs, and present benchmarks showing that models trained solely on Synetic-generated data
outperform real-world baselines across multiple metrics. Our results demonstrate that synthetic
data is not just viable, but necessary for scalable, high-performance vision AI.
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1 Introduction

Computer vision is transforming industries from
autonomous vehicles and robotics to agriculture
and defense. As models grow more capable, their
appetite for high-quality training data grows ex-
ponentially. Yet the bottleneck persists: as-
sembling datasets that are large, diverse, accu-
rate, and representative of the real world remains
slow, expensive, and difficult to scale.

This white paper addresses one of the most
stubborn challenges in computer vision — the
data problem. We assess the limitations of real-
world data collection, introduce a taxonomy of
synthetic data approaches, and argue that syn-
thetic data is not merely a workaround but a
superior substrate for training high-performance
vision systems. We present case studies and
benchmarks that demonstrate the generalization
advantages of synthetic data generated by Sy-
netic AI, and outline what the future of vision
data should look like.

2 The Status Quo

2.1 Real-World Data Collection

Real-world data collection has long been the de-
fault for training computer vision models. But
capturing diverse, high-quality images in un-
controlled environments is difficult and expen-
sive. Lighting, occlusion, weather, and object
variation all impact the value of the collected
data. Teams often rely on staged data collection,
sourcing from limited environments or curated
databases that don’t reflect operational complex-
ity.

The process is also slow: coordinating sub-
jects, capturing events across enough conditions,
and achieving sufficient diversity all take time.
And despite best efforts, edge cases such as un-
usual lighting conditions, rare object interac-
tions, and novel backgrounds are often missed
entirely.

2.2 Manual Annotation

Manual annotation, the process of labeling each
image by hand, has historically been a key step
in the data pipeline. Bounding boxes, segmenta-
tion masks, and keypoints are applied manually
by teams of human annotators, often outsourced
at scale.

This approach is not only labor-intensive and
slow, but prone to inconsistency and error.
Annotators may disagree, make mistakes, or
miss small details entirely, especially in complex
scenes. Privacy concerns also limit what can
be annotated: medical, industrial, or consumer
data often comes with compliance and redaction
burdens. As datasets grow, maintaining quality
across millions of images becomes increasingly
difficult.

In an era when automation is transforming ev-
ery part of AI workflows, the continued reliance
on manual annotation reflects a gap in the stan-
dard pipeline rather than a feature of it.

2.3 Generative AI Approaches

In recent years, generative models such as GANs
(Generative Adversarial Networks)[4], [5] and
diffusion models have gained attention as a
means to generate synthetic training data. These
methods can create entirely new images from
scratch based on statistical patterns learned from
real-world data. In theory, they promise the abil-
ity to “imagine” new training samples without
needing additional manual collection or labeling.

However, their practical application in com-
puter vision training pipelines remains limited.
First, these models require massive amounts of
real data to train effectively, reintroducing the
original bottleneck. Second, the generated im-
ages lack physical grounding, often producing
artifacts, implausible object geometries, or un-
realistic lighting conditions, especially in edge
cases or domain-specific tasks. Third, generative
models provide limited control over specific pa-
rameters such as camera pose, lighting variation,
or object placement, which are often critical for
training robust CV models.
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Moreover, generative content raises unresolved
legal and ethical questions. Ownership of gener-
ated images, their provenance, and licensing im-
plications can complicate adoption, particularly
for enterprise or government use. In regulated
domains or safety-critical applications, the in-
ability to trace the origin and configuration of
generated samples poses a significant liability.

While generative models remain an exciting
area of research, they are not currently well-
suited for applications where fine-grained con-
trol, domain realism, and explainability are es-
sential.

2.4 3D Modeling Pipelines (e.g.,
Omniverse-style Systems)

Another approach to synthetic data genera-
tion involves the use of high-end 3D rendering
pipelines, often built on platforms like NVIDIA
Omniverse or Unity. These systems rely on de-
tailed 3D models of objects, environments, and
sensors to simulate photorealistic scenes under
varied conditions. They offer strong control over
parameters like lighting, camera intrinsics, mate-
rial properties, and environmental physics, mak-
ing them a promising solution for creating struc-
tured, labeled datasets.

However, the practical barrier is high. Teams
must either already possess detailed 3D models
of their domain or invest substantial time and
budget to create them. In many industries such
as retail (e.g., stocking simulations), agriculture
(e.g., crop disease modeling), or manufacturing
(e.g., defect detection), those 3D assets simply
don’t exist. Building them requires expertise in
3D modeling, rigging, texturing, and simulation
that most computer vision teams don’t have in-
house. As a result, the tools are often underuti-
lized or remain in proof-of-concept phases.

Further, these pipelines are not always opti-
mized for dataset generation. They are built for
visual fidelity and real-time rendering, not for
the speed, scale, or annotation efficiency required
by machine learning workflows. While they of-
fer deep customization, that customization can

come at the cost of complexity, slow iteration
cycles, and engineering overhead.

For teams with both the assets and the tech-
nical capacity to operate these pipelines, the re-
sults can be powerful. But for many organiza-
tions, the barrier to entry remains too steep to
make them a practical data-generation solution.

2.5 Generic Synthetic Data Meets
Real-World Complexity

In response to the demand for synthetic data, a
number of startups and platforms have emerged
offering pre-built pipelines and datasets. These
services often promise ease of use: customers can
request training data for object detection, seg-
mentation, or pose estimation without the need
to set up their own rendering infrastructure or
manage 3D pipelines.

However, many of these providers rely on
open-source 3D assets originally created for gam-
ing or entertainment—not for scientific accuracy
or visual realism in industrial use cases. These
assets tend to be stylized, poorly textured, or
lacking the physical characteristics (e.g., reflec-
tivity, wear, shape variance) that are critical for
computer vision tasks. Moreover, asset reuse
across customers can lead to overfitting or un-
realistic generalization behavior when training
models.

Another common limitation is a lack of con-
trol. Teams may receive a dataset with random
lighting or camera angles, but without the ability
to specify the exact sensor characteristics, envi-
ronment parameters, or annotation types. With-
out that precision, synthetic data loses its pri-
mary advantage: the ability to shape the dataset
to match the real-world deployment scenario.

These providers reduce friction for simple ex-
periments but often fall short when teams need
domain-specific realism, fine-grained annotation,
or scalable customization. In practice, this leaves
many vision teams back at square one: unable
to generate training data that truly reflects the
complexity of their operational environment.
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Summary: These limitations expose the urgent
need for a synthetic data approach that combines
realism, control, and speed without high opera-
tional overhead. In the next section, we describe
how Synetic AI meets that need.

3 The Ideal Synthetic Data
System

If computer vision had a holy grail, it would be
this: a scalable source of accurate, diverse, con-
trollable, ethical, moral and legally safe training
data. Not an approximation. Not a shortcut. A
true pipeline that enables any vision team to cre-
ate exactly the data they need, when they need
it, without relying on brittle manual processes or
opaque generative outputs.
In an ideal world, synthetic data would offer:

• Full control over every parameter: ob-
ject geometry, textures, lighting conditions,
camera models, occlusion, background clut-
ter, sensor noise, and more.

• Perfect labels baked into every frame, auto-
matically generated at pixel-level accuracy
for every supported annotation type (e.g.,
bounding box, segmentation, depth).

• Instant scalability, where producing 10 im-
ages or 10 million is simply a function of
computing resources—not project logistics.

• Support for a wide range of sensors, includ-
ing RGB, LiDAR, stereo, thermal, night vi-
sion, hyperspectral and radar, with physi-
cally accurate simulation.

• Procedural variation to ensure each image
is unique across position, lighting, time of
day, environmental conditions, and object
configurations.

• Edge case generation, allowing rare or
safety-critical scenarios to be encountered in
training rather than discovered only in pro-
duction.

• Consistency and reproducibility, so datasets
can be regenerated or extended over time
while maintaining architectural integrity.

Moreover, by generating assets procedurally or
licensing them for simulation use, such systems
can avoid the legal uncertainty associated with
scraped datasets or generative image synthesis.
Users retain full commercial rights, and pipelines
are IP-safe, auditable, and traceable.

Privacy is inherently protected: no human
subjects are recorded, and no sensitive environ-
ments are exposed. Annotation is fully auto-
mated, eliminating the need to share or review
private frames with third-party labor. This ef-
fectively enables a compliant-by-design approach
to computer vision development.

In short, the ideal synthetic data system does
not merely replicate reality—it improves on it.
It offers vision teams the power to iterate faster,
train safer, and deploy smarter.

4 Why Synthetic Data
Should Work

If the ideal dataset is one where every factor is
known, controllable, and infinitely reproducible,
then synthetic data is the only path that can, in
principle, meet those criteria.

When built with precision and intent, syn-
thetic data pipelines give computer vision teams
full control over their training inputs, enabling
more systematic model development. Unlike
data scraped from the real world or generated
by unconstrained AI models, simulation-based
pipelines are engineered from the ground up for
visibility, structure, and repeatability.

4.1 Parameter Space Coverage

Scene generation pipelines can be configured to
systematically cover the parameter space that af-
fects model generalization: lighting conditions,
camera positions and intrinsics, object geometry
and pose, occlusion levels, material reflectance,
and environmental context. This structured

5



variation enables models to learn invariant rep-
resentations and handle edge conditions with
higher robustness.

4.2 Label Accuracy and Density

Synthetic data provides perfect ground truth.
Bounding boxes, segmentation masks, depth
maps, normals, keypoints, and occlusion meta-
data are all derived directly from the source ge-
ometry, ensuring alignment and eliminating hu-
man error or inconsistency.

4.3 Sensor Simulation

Modern pipelines can simulate multi-modal sen-
sor data, including LiDAR, stereo disparity,
thermal, and radar. With accurate calibra-
tion parameters (intrinsics/extrinsics, distortion
models), these synthetic sensor streams align to
real-world conditions, enabling pretraining and
sensor fusion before field deployment.

4.4 Repeatability and Regression
Testing

Unlike real-world data, synthetic scenes are per-
fectly repeatable. Any image or sequence can be
regenerated identically, allowing teams to isolate
changes in model performance, run structured
experiments, and iterate quickly.

4.5 Edge Case Amplification

Scenarios that rarely appear in real-world
datasets such as obscured objects, overlapping
items, and adverse lighting can be deliberately
oversampled. Synthetic pipelines make these
events first-class citizens in the training process,
improving model robustness in unpredictable en-
vironments.

4.6 Reduced Domain Gap through
PBR

Advances in physically based rendering (PBR),
BRDF materials, and structured photorealism

have narrowed the gap between synthetic and
real-world imagery. Combined with domain ran-
domization and camera calibration realism, this
reduces the burden of domain adaptation.

Synthetic data doesn’t just patch over the lim-
its of real-world pipelines—it offers a fundamen-
tally more controllable substrate for building ro-
bust vision systems.

5 Why Most Synthetic Data
Falls Short

In theory, synthetic data should already solve
the training data problem in computer vision.
With control, scalability, and perfect labels, it
promises to outperform real-world data in many
domains. But in practice, the gap between
what’s theoretically possible and what’s actually
deployed remains significant.

Most existing synthetic datasets and genera-
tion pipelines fall short because they were not
designed with vision model training in mind.
They were built for visual appeal, animation, or
human interpretation—not for the demands of
learning systems. As a result, these datasets of-
ten suffer from:

• Unrealistic environments: Many
pipelines use open-source 3D assets or
repurpose gaming content that lacks the
visual and physical realism necessary to
train reliable models.

• Shallow variation: Changes in lighting,
angle, materials, and backgrounds are often
superficial or manually configured, limiting
coverage of real-world edge cases.

• Lack of annotation precision: Anno-
tations may be limited to basic bounding
boxes or semantic masks, without the pixel-
perfect precision or rich metadata needed
for fine-tuned training.

• No sensor simulation: Depth, LiDAR,
and multi-sensor fusion are typically unsup-
ported or approximated, reducing the utility
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of these datasets for robotics or edge deploy-
ment.

• Workflow rigidity: Many tools are opti-
mized for static scenes or slow iteration cy-
cles, making it difficult to adapt datasets to
new SKUs, environments, or behaviors.

In short, synthetic data is only as powerful
as the pipeline used to generate it. Without
full control over both assets and rendering, most
platforms fall into the same trap as real-world
data—limited generalization, slow iteration, and
poor coverage of what truly matters.

6 A Shift in Vision AI: To-
ward Task-Specific Syn-
thetic Pipelines

The limitations of traditional synthetic data
workflows have led to a growing realization
across the vision AI field: general-purpose ren-
dering pipelines, often borrowed from gam-
ing or entertainment, are not sufficient for
high-performance model training. As vi-
sion systems move into more complex envi-
ronments—factories, farms, warehouses, clin-
ics—the need for domain-specific, task-aware
synthetic data is becoming clear.
We are beginning to see a shift away

from large, one-size-fits-all datasets and toward
pipelines that are:

• Use-case driven: Built around a specific
operational objective, whether it’s recogniz-
ing damaged packages, counting apples, or
guiding a robot through a cluttered space.

• Sensor-aware: Generating not just RGB
images but also depth maps, LiDAR sweeps,
thermal overlays, and other modalities to
match real-world sensor inputs.

• Customizable: Allowing users to vary
scene geometry, lighting, object configura-
tions, and environmental conditions to re-

flect the range of variation the model will
encounter.

• Integrated with model training: De-
signed not just for visual realism but for fast
feedback loops with training architectures,
shortening iteration cycles.

This trend parallels broader movements in AI:
the move from foundation models to specialized,
vertical models. Instead of endlessly scaling data
or parameters, teams are now aiming to encode
domain understanding directly into their train-
ing data pipelines starting with how that data is
created in the first place.

7 A Practical Implementa-
tion: The Synetic AI Ap-
proach

Synetic AI was developed in response to per-
sistent gaps in real-world data collection, man-
ual annotation, and the shortcomings of both
generative and simulation-based synthetic data.
Rather than focusing on a single vertical, Synetic
AI built a general-purpose platform to create
synthetic datasets that are domain-adaptable,
photorealistic, and procedurally configurable for
real-world deployment.

The platform rests on three pillars:

7.1 Asset Fidelity and Variation

All 3D assets are constructed or procedurally
generated in-house with high levels of physical
and visual realism. These assets are tailored for
machine vision and undergo versioned modeling
at multiple states or conditions (e.g., varying ma-
turity for crops, different wear states for mechan-
ical parts). This provides meaningful diversity in
datasets and supports use cases requiring fine-
grained detection or rare edge conditions.
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7.2 Physics-Based Rendering and
Sensor Simulation

Synetic AI uses modern rendering engines tuned
for physical accuracy, generating RGB, depth,
LiDAR, and other sensor modalities with con-
sistency and realism. Cameras, lighting, materi-
als, and environments are procedurally random-
ized within bounded, user-controlled parameters
to simulate variability without sacrificing label
precision. This supports domain transfer and
robustness under real-world lighting, occlusion,
and motion conditions.

7.3 Metadata-Driven Labeling

Because all objects, motions, and environmental
changes are generated within a controlled simu-
lation space, annotations are created automati-
cally and with pixel-level precision. Supported
label types include bounding boxes, directional
bounding boxes, segmentation masks, keypoints,
depth maps, and occlusion metadata. This elim-
inates the need for manual annotation and sup-
ports multi-task model training across diverse
CV applications.

7.4 Scalability and Performance

Synetic AI is engineered for industrial-scale per-
formance, capable of generating millions of an-
notated images per hour and completing full
model training workflows within minutes. This
throughput makes it feasible to iterate rapidly,
benchmark edge conditions, and scale experi-
ments without prohibitive cost or delay.

8 Real-World Applications
Where Synthetic Data
Leads

Synthetic data is not just a workaround for diffi-
cult scenarios, it is increasingly the foundation
of modern computer vision systems across in-
dustries. Its advantages in precision, control,

and scalability make it a superior choice even in
well-instrumented domains, and an essential en-
abler in others. The following examples highlight
sectors where synthetic data is already deliver-
ing state-of-the-art results, setting a new stan-
dard for how vision models are developed and
deployed.

8.1 Agriculture

Accurate monitoring of crop health, emergence,
and growth stage demands fine-grained visual
recognition across a wide range of environmental
conditions. Synthetic datasets allow simulation
of crop lifecycles with controllable variables such
as lighting, maturity, and weather. This enables
robust models trained to handle real-world field
variation without relying on costly seasonal data
collection. Procedural generation supports the
inclusion of rare but critical edge conditions like
disease symptoms or weather-related damage.

8.2 Robotics and Automation

Autonomous systems in warehouses and man-
ufacturing must identify thousands of objects,
adapt to changing layouts, and operate in highly
dynamic environments. Synthetic data provides
precisely labeled training scenes with realistic
occlusion, lighting changes, and material prop-
erties. It also supports multi-sensor simulation
(e.g., RGB + LiDAR), enabling integrated vision
pipelines for tasks such as robotic picking, shelf
scanning, and indoor navigation.

8.3 Defense and Aerospace

Synthetic data offers a powerful solution for
training models in domains where data is scarce,
classified, or unsafe to collect. Tasks such as
aerial surveillance, SAR alignment, and multi-
spectral terrain classification benefit from pro-
cedurally generated scenes with precise sensor
calibration and broad environmental variation.
This enables pretraining and validation of sys-
tems that must perform in adversarial or rapidly
changing conditions.
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8.4 Industrial Inspection

Inspection tasks in industrial settings often re-
quire detecting rare anomalies in repetitive pat-
terns, such as defects in manufactured parts or
cracks in infrastructure. Synthetic data allows
the injection of controlled defects under a variety
of lighting and material configurations, acceler-
ating development of vision systems for quality
control, predictive maintenance, and safety com-
pliance.

8.5 Medical Imaging (Experimen-
tal Use)

Synthetic imagery has growing value in medical
research and pretraining applications, particu-
larly where real data is limited by privacy, ethics,
or availability. Domain-aware synthetic samples
— such as simulated microscope images or surgi-
cal tool views — can be used to bootstrap models
for tasks like instrument detection, cell counting,
or anomaly spotting, instrument/process verifi-
cation, validation and calibration. While not
a replacement for clinical validation, synthetic
data supports faster iteration and experimenta-
tion in regulated domains.

These use cases illustrate not only the breadth
of synthetic data’s applicability, but its central
role in building the next generation of vision sys-
tems. Systems that are faster to develop, more
resilient in deployment, and less constrained by
real-world data collection.

9 Summary: Trade-offs
Across Data Generation
Approaches

The challenge of acquiring reliable, diverse, and
labeled data for computer vision has led to a
range of data generation strategies, each with
distinct trade-offs in realism, cost, scalability,
and control. The following summarizes the key
characteristics of each approach:

Manual Collection and Annotation

Still the industry default, this approach involves
capturing real-world scenes and labeling them by
hand. While inherently realistic, it suffers from
slow turnaround, high cost, inconsistent labeling,
and limited coverage of rare or edge conditions.

Generative AI (GANs and Diffusion
Models)

Generative models can produce diverse visual
content quickly and at scale. However, they
lack physical grounding, struggle with fine con-
trol over scenes or camera parameters, and often
require unreliable post hoc labeling. Legal and
attribution issues further limit their enterprise
adoption.

Custom 3D Pipelines (e.g., Omni-
verse)

High-fidelity pipelines built using tools like Unity
or Omniverse offer strong realism and control,
including multi-sensor simulation. But they
demand significant upfront investment, 3D as-
set creation, and engineering expertise—putting
them out of reach for many teams.

Synthetic Data Providers Using
Game Assets

These services offer fast access to synthetic data
using repurposed 3D models from entertainment.
They reduce time-to-data but frequently lack vi-
sual realism, procedural variation, and sensor
simulation. Their use of shared or stylized as-
sets can also impair model generalization.

Purpose-Built Simulation Platforms

A new class of tools purpose-built for com-
puter vision training combines procedural con-
trol, physically based rendering, and sensor-
specific outputs. These platforms support fast it-
eration and precise annotation without requiring
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teams to manage their own rendering infrastruc-
ture. While still emerging, they offer the best
trade-offs for scalable, high-performance model
development.

10 Challenges and Limita-
tions of Synthetic Data

While synthetic data offers substantial advan-
tages over traditional approaches, it is not with-
out limitations. These challenges are impor-
tant to understand in order to responsibly evalu-
ate synthetic pipelines and ensure reliable down-
stream performance.

10.1 Generalization to Real-World
Data

The most frequently cited concern with syn-
thetic data is generalization. If models are
trained only on synthetic imagery and the do-
main gap between synthetic and real-world in-
puts is large—due to insufficient variation, un-
realistic lighting, or implausible object behav-
ior—performance can degrade at deployment. In
pipelines where synthetic data lacks sufficient fi-
delity or diversity, domain adaptation and pe-
riodic real-world validation can help bridge the
gap.

10.2 Computational and Resource
Costs

Generating high-quality synthetic data at
scale—especially with realistic rendering, pro-
cedural variation, and multi-sensor simula-
tion—requires infrastructure. Teams must pro-
vision cloud compute or maintain GPU render-
ing clusters, manage asset libraries, and opti-
mize scene complexity. While synthetic data
is cheaper than collecting and annotating real-
world data at scale, it introduces new operational
requirements that must be planned for.

10.3 Regulatory Requirements for
Real Data

Some industries and government agencies are be-
ginning to propose or enforce requirements that
a percentage of training data be drawn from real-
world sources. While this may make sense in the
context of generative AI or large language mod-
els, it is increasingly outdated when applied to
synthetic data generated through physically ac-
curate simulation. These mandates, while well-
intentioned, may constrain innovation and limit
performance in cases where synthetic data offers
stronger generalization and better control.

While many limitations of synthetic data can
be addressed through engineering, simulation
quality, and pipeline maturity, not all challenges
are technical. Regulatory environments, institu-
tional inertia, and outdated assumptions about
data provenance continue to shape perceptions
and adoption. Understanding these factors helps
distinguish between temporary obstacles and in-
trinsic trade-offs, and reinforces the need for crit-
ical evaluation as synthetic data matures into the
default foundation for vision AI.

11 Rethinking Vision AI
Through Simulation

As the computer vision field shifts from data-
rich generalization to real-world specialization,
the assumptions behind traditional training data
are being reconsidered. The simulation-first
paradigm; where models are trained, tested, and
refined using procedurally generated, perfectly
labeled, and fully controlled synthetic data, is
emerging as a foundational approach for the next
generation of AI systems.

11.1 Task-Specific Models, Not
One-Size-Fits-All

Edge deployments and vertical applications in-
creasingly demand models that are small, effi-
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cient, and hyper-specialized. Instead of massive,
general-purpose models, many use cases benefit
from focused networks that perform one task ex-
tremely well under known conditions. Synthetic
data allows teams to generate datasets that ex-
actly match these operating contexts, enabling
smaller models to achieve higher reliability with
lower compute requirements.

11.2 Embedding Business Logic in
Data

Traditionally, much of a vision system’s domain
expertise is encoded in post-processing steps or
downstream logic. With synthetic data, that
knowledge can be embedded directly into the
dataset itself. By simulating edge cases, rare
scenarios, and operational quirks during genera-
tion, vision engineers effectively teach the model
to incorporate business-specific constraints dur-
ing training, leading to simpler and more robust
deployment.

11.3 Simulation as Testable Infras-
tructure

Synthetic pipelines are more than a source of
data—they are testbeds for experimentation.
Because each dataset is reproducible, vision
teams can test hypotheses, isolate variables, and
run regression tests with unprecedented control.
Adding new SKUs, lighting conditions, or fail-
ure modes becomes a simulation problem, not
a data collection problem. This enables CI/CD
workflows for vision AI, unlocking faster itera-
tion and more rigorous validation.

11.4 Simulation-First AI: A
Paradigm Shift

Just as CAD transformed mechanical design and
SPICE revolutionized electronics, simulation is
poised to redefine how computer vision systems
are built. The future of vision AI lies in envi-
ronments where every image is synthetic by de-
fault, every annotation is automatic, and every

assumption is testable. In this future, synthetic
data is the baseline, not a compromise.
This emerging paradigm doesn’t diminish the
role of real data, rather it repositions it as valida-
tion, not foundation. Simulation-first workflows
empower organizations to build better systems
from the ground up, reducing costs, improving
safety, and accelerating deployment across indus-
tries.

11.5 Training for Behavior and
Temporal Understanding

Simulation also makes it possible to train mod-
els not just on what objects are, but on what
they do. By animating realistic behavior such as
animals moving, machinery operating, or peo-
ple performing specific actions, simulation pro-
vides time-sequenced training data for activity
recognition, anomaly detection, and behavioral
classification. These capabilities are critical for
applications like safety monitoring, robotics, and
animal health, where understanding how things
move or change over time is as important as
static identification.

12 Experimental Validation:
Synthetic vs. Real Data

To assess the effectiveness of synthetic data in
real-world computer vision tasks, we conducted
a series of benchmark experiments comparing
models trained on real, synthetic, and hybrid
datasets.

12.1 Experiment Setup

We trained YOLOv12-n models (2.6M param-
eters) on four dataset variants: - Real Data:
Hand-collected and manually annotated RGB
images - Synetic Synthetic: Images rendered us-
ing the Synetic platform - Real + Synthetic: A
merged dataset with equal parts real and syn-
thetic images - Synetic + Backgrounds: A vari-
ant where synthetic backgrounds were rendered
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Table 1: ApplesM5: Benchmark Results Across Dataset Variants
Training Setup mAP50 mAP50-95 mAP50-np mAP50-95-np Precision Recall Precision-np Recall-np

Real 0.5573 0.2670 0.5731 0.2916 0.7526 0.5731 0.7526 0.5731
Synetic (train) + Real (val) 0.6487 0.3554 0.6941 0.3950 0.5281 0.6941 0.5314 0.6942
Synetic+BG (train) + Real (val) 0.6582 0.3753 0.7217 0.4279 0.4894 0.7217 0.4927 0.7218
Synetic + Real (joint) 0.5889 0.2700 0.6012 0.2967 0.7844 0.6012 0.7844 0.6012

as a negative case with no annotations

All models were trained using standard
SGD for 100 epochs on NVIDIA B200
GPUs, with identical hyperparameters and
a batch size of 32. The Real dataset was
downloaded from https://www.kaggle.

com/datasets/projectlzp201910094/

applebbch81?resource=download - which
we split into 90% train and 10% val. We then
produced a Synetic dataset to match the same
images count as in the real dataset for train and
val

Models were validated against the val set of
the Real data Evaluation metrics included: -
Precision (P) - Recall (R) - Mean Average Pre-
cision (mAP50 and mAP50-95): - Precision (P)
- Recall (R) - Mean Average Precision (mAP) at
0.3 IoU

12.2 Results

Table 1 summarizes benchmark results across
four dataset configurations.

12.3 Analysis

The results show that training on synthetic data
alone (with real-world validation) consistently
outperforms real-only training across all gener-
alization metrics. In particular, mAP@50 and
mAP@50-95 improve substantially, suggesting
that synthetic datasets provide richer and more
diverse signal for model training. The inclu-
sion of unannotated synthetic backgrounds fur-
ther enhances model robustness by improving
discrimination.

Interestingly, real-only training achieves the
highest precision, while synthetic-trained mod-
els excel in recall and overall detection cover-

age—highlighting synthetic data’s ability to ex-
pand model sensitivity. Precision trade-offs can
be managed through post-processing or thresh-
old tuning depending on application context.

All datasets, training parameters, and anno-
tation configurations used in this evaluation are
publicly available at: https://synetic.ai/white-
paper/breaking/benchmark.

12.4 Related Work

These results align with broader findings from
simulation environments like CARLA [1], Syn-
scapes [2], and FlyingThings3D [3], where syn-
thetic datasets have demonstrated strong pre-
training benefits. Our benchmarks extend this
work into industrial settings with procedural
variation and multi-task labels.

13 Conclusion

The foundation of computer vision is shifting.
For decades, the field has relied on real-world
data as its bedrock. Painstakingly collected,
manually annotated, and inherently limited in
both scale and precision. This paper has shown
that synthetic data, when built with physical
accuracy, procedural variation, and simulation-
driven realism, is not just a viable substitute. It
is a superior foundation.

Across use cases and architectures, models
trained on synthetic data not only match but
exceed the performance of those trained on real
data. The advantages of perfect labels, repeata-
bility, full control, and cost-effective scale offer a
fundamentally better substrate for building high-
performance models. Rather than being con-
fined to supplementing small edge cases, syn-
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thetic data is proving to be the primary input
for reliable vision systems.
Moreover, the ability to embed business logic,

simulate sensor diversity, and adapt to chang-
ing environments makes synthetic data not just
scalable, but extensible. It accelerates iteration,
improves generalization, and enables consistent
benchmarking. Unlike large language models,
which often require extensive fine-tuning and on-
going inference infrastructure to handle down-
stream tasks, vision models trained with syn-
thetic data can internalize logic directly through
the dataset itself — resulting in smaller, more
efficient systems that reflect operational con-
straints by design. As simulation becomes as
standard in vision AI as CAD is in mechanical
design, the question is no longer if synthetic data
can replace real data, but when it will become
the default.
This paper lays the groundwork for that tran-

sition. Synthetic data is no longer a workaround
for inconvenient datasets, it is the cornerstone of
a new generation of vision AI.

14 Future Work and Open
Questions

While this paper provides evidence that syn-
thetic data can outperform real-world data for
computer vision model training, many open
questions and opportunities for advancement re-
main. Continued research and collaboration are
needed to mature the field and establish broader
adoption standards.

14.1 Quantifying Synthetic Do-
main Realism

One challenge in evaluating synthetic data
pipelines is the absence of standardized metrics
for ”realism.” While photorealism is one axis,
physical accuracy, sensor fidelity, and statisti-
cal diversity are equally important. Establish-
ing benchmarks or perceptual realism scores may
help teams compare pipelines more rigorously.

14.2 Hybrid Pipelines: Synthetic
+ Real

Many organizations may not have the resources
to fully replace real-world data or may have
legacy datasets that remain valuable. Future
work could explore systematic ways to combine
synthetic and real-world images during training,
including best practices for fine-tuning, augmen-
tation strategies, and domain adaptation work-
flows.

14.3 Expanding Modalities and
Use Cases

While RGB and LiDAR are common in synthetic
datasets, new use cases increasingly require ther-
mal, radar, polarization, and multimodal fusion.
Continued improvements in sensor simulation
and annotation tooling are needed to support
these pipelines. Similarly, behavioral training
where objects exhibit time evolving states or in-
teractions, represents a growing frontier.

14.4 Reproducibility and Stan-
dards

The synthetic data field still lacks commonly ac-
cepted standards around dataset structure, li-
censing, and validation. Open benchmarks and
reproducible workflows can foster confidence in
results and create shared expectations. These
foundations are critical for integration into reg-
ulated, safety-critical domains.

14.5 Ethics and Policy

As synthetic data becomes the foundation of ma-
chine learning workflows, it raises important eth-
ical and policy questions. Should certain types
of synthetic data be labeled as such? Are there
risks of bias from procedurally generated envi-
ronments? What regulatory frameworks are ap-
propriate as models trained exclusively on syn-
thetic data begin to power autonomous systems?

Ongoing dialogue with academia, industry,
and regulators will be crucial to answering these
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questions and unlocking the full potential of
simulation-first AI development.
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