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Abstract

Deep learning model performance for apple detection in agricultural automation is often limited by the inherent variabil-
ity in lighting, occlusion, and scale that characterizes uncontrolled outdoor environments. Traditional reliance on expensive
and laborious real-world data collection creates a bottleneck for achieving truly robust models. This paper investigates an
alternative approach: training deep learning models exclusively on a purely synthetic dataset generated via 3D rendering,
while reserving a small, real-world dataset solely for validation and testing. Our experiments across modern YOLO architec-
tures demonstrate that this strategy yields substantial performance gains, increasing the mean Average Precision (mAP50-95)
by up to 34.24% and Recall by up to 22.14% when compared to models trained exclusively on real data. While the pure
synthetic approach maximizes object coverage (Recall), the deceptively high Precision of models trained only on real data is
confirmed to be a symptom of **overfitting**, indicating fragile performance under general conditions. Crucially, the data
demonstrates that the **hybrid approach is an unnecessary compromise**, as the inclusion of limited real data causes a con-
sistent ≈ 10 − 15% decline in generalizable performance (mAP and Recall) across all architectures. This research confirms
the pure synthetic approach is the most effective training methodology, maximizing feature diversity and Recall gains with-
out introducing the performance-limiting biases of a small, overfit real dataset. All results were independently validated and
reproduced by researchers at the University of South Carolina, who confirmed benchmark integrity and the generalizability
of the synthetic training signal.
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1 Introduction: The Data Bottleneck
in Agricultural Vision Systems

Computer vision is transforming agriculture, but orchard de-
tection remains one of its most stubborn challenges. Apples
hide in dense foliage, overlap in clusters, and shift under
variable lighting. For CV teams, the result is familiar: mod-
els that look promising in training collapse in the field.

The root issue isn’t the model architecture. It’s the data.
Real-world datasets are constrained by harvest windows, ex-
pensive to annotate, and riddled with inconsistency. Even
the best public orchard datasets miss edge cases like hail
damage or partial occlusion. Critically, the limited variance
in these datasets leads to poor generalization and models
that fail to transfer across regions, cultivars, or camera se-
tups.

This whitepaper presents a different approach: rendered
datasets, procedurally generated and physically simulated
using the Synetic AI platform. We created a fully synthetic
orchard dataset—matched in size to a top real-world bench-
mark—and trained models head-to-head across multiple ar-
chitectures, including six YOLO variants and RT-DETR.
Across all models, Synetic-trained networks consistently
outperformed those trained on real-world data, achieving a
peak improvement of +34.24% in mAP50-95 and Recall
gains of up to +22% on real-world validation sets—without
any domain adaptation. This entire benchmark, including
the core metrics and methodology, was independently val-
idated and confirmed by researchers at the University of
South Carolina to ensure third-party objectivity and techni-
cal rigor.

What follows is a focused case study in how simulation-first
pipelines don’t just match real-world data—they beat it. In
a domain where every false negative means lost yield, syn-
thetic data isn’t a fallback. It’s a foundation.

2 Related Work: The Fragility of
Real-World Datasets

Training a vision model to detect apples sounds straightfor-
ward until you try to do it in an actual orchard.

Unlike warehouse or lab environments, orchards are messy,
unstructured, and constantly changing. Branches occlude
fruit. Light filters unevenly through canopies. Wind shifts
shadows between frames. Apples overlap, blend into back-
ground foliage, or ripen unevenly. These aren’t edge cases,
they’re the norm.

Even with good cameras, collecting usable orchard data is
a logistical and financial challenge. Harvest timing lim-
its the window for data capture. Tree height, row spac-
ing, and equipment constraints restrict camera placement.
And once the images are collected, they must be labeled
by hand, an expensive and error-prone process. Annotators
miss partially occluded fruit, mislabel growth stages, or ap-
ply bounding boxes inconsistently across frames. That noise
becomes baked into the model.

Then comes the definitive problem: generalization. A model
trained on one orchard in Washington may not work in an-
other in Michigan. It might fail under overcast skies, in a
different row orientation, or on a new harvester-mounted rig.
These variations aren’t bugs, they’re agriculture. But they
break vision models trained on narrow, overfitted real-world
datasets.

**Critically, this methodological flaw manifests as the Pre-
cision Paradox:** despite decades of effort, models trained
on limited real data often achieve deceptively high Precision
scores on their small, corresponding validation sets. This
high Precision is a symptom of **overfitting** to a narrow
distribution, leading to the low Recall and complete collapse
of general performance observed during cross-site deploy-
ment. The problem is not in the architecture; it is in the data.

2.1 Existing Dataset Limitations and the Illu-
sion of Performance

While several apple datasets are available for academic and
commercial use, most fall short when applied to real-world
agricultural automation. We selected the BBCH81 Ap-
ple Dataset as our baseline for comparison not because it’s
flawed, but because it represents the best of what’s currently
accessible: a decently sized, manually annotated collection
of orchard images spanning common apple growth stages.

But even well-known datasets like this one reflect deeper
systemic issues:

• Limited environmental diversity → Overfitting:
Most images are captured in a single orchard under a
narrow range of lighting and weather conditions. As a
result, trained models tend to overfit to that specific set-
ting, resulting in **fragile Precision** and a failure to
generalize elsewhere.

• Annotation inconsistency → Feature Misalignment:
Like most real-world datasets, BBCH81 relies on man-
ual labeling. We observed inconsistent box sizes,
missed apples, and occasional false positives. This
noise teaches models an incorrect confidence threshold,
undermining true feature learning.

• Static viewpoints → Inconsistent Feature Mapping:
The majority of images are captured from similar an-
gles and distances, with limited variation in pitch, yaw,
or focal length. This makes it difficult to general-
ize across sensor mounts (e.g., drones vs. tractors vs.
ground rigs).

• Sparse edge cases → Low Recall Ceiling: The dataset
lacks diseased fruit, partially eaten apples, hail dam-
age, underexposed frames, and other rare but opera-
tionally important conditions. This restricts the ceiling
of achievable Recall.

These limitations aren’t a criticism of the dataset itself,
they’re a reflection of the broader difficulty in collecting
high-quality real-world data in agriculture. The question is
not whether real data is valuable, but whether it’s **suffi-
cient or even suitable** for robust, field-ready model devel-
opment.
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Limitation Impact on Model Training

Single orchard
environment

Overfits to location-specific lighting,
resulting in **fragile Precision**.

Manual annotations Inconsistent boxes, missed apples, and
inherent label noise.

Limited camera
variation

Poor generalization to new sensor
placements or equipment.

No rare events Restricts Recall ceiling for
operationally critical conditions (e.g.,
hail damage).

Uniform lighting Fails under backlight, low light, or
severe glare conditions.

Table 1: Systemic limitations found in real-world orchard
datasets such as BBCH81, leading to performance fragility.

3 Methodology

To rigorously evaluate the generalization power of syn-
thetic data, we conducted a series of controlled experiments
comparing models trained on real versus rendered datasets.
Seven object detection models (six YOLO variants and one
transformer-based RT-DETR) were trained on identical im-
age counts, matched hyperparameters, and the same hard-
ware, allowing us to isolate the impact of the dataset itself.

3.1 Training Setup and Architecture

The integrity of the benchmark rests on maintaining strict
control over non-data variables. The technical setup for all
training runs was as follows:

• Architectures: YOLOv3n, YOLOv5n, YOLOv6n,
YOLOv8n, YOLOv11n, YOLOv12n, RT-DETR-L

• Training time: 100 epochs

• Optimizer: AdamW

• Hardware: Vultr Cloud GPU with NVIDIA B200
GPUs

• Evaluation set: Held-out real-world validation set
from the BBCH81 Apple dataset, with additional
markups for completeness.

Although dataset size was held constant for this benchmark,
this constraint was applied purely for experimental control.
In production scenarios, dataset size is rarely a bottleneck
for rendered pipelines.

3.2 Training Variants

To test the central hypothesis regarding pure synthetic supe-
riority, each architecture was trained under three conditions:

Table 2: Training Conditions for Each Model Architecture

Condition Training Data Hypothesis Tested

Real-Only Manually
annotated BBCH81
images

The baseline for
performance
fragility and
overfitting on
limited data.

Synetic-Train Rendered training
images, real-world
validation set

Test of pure
generalization
capacity; the
expected true
optimal performer.

Synetic + Real
(Joint)

Real + Synetic (full
dataset each)

Measures the
performance
change (often
detrimental) when
combining real
data biases with
synthetic diversity.

3.3 Evaluation Metrics and Practical Thresh-
olds

We evaluated model performance using standard object de-
tection metrics, but adopted practical thresholds necessary
for real-world agricultural deployment:

• mAP@50: Classic object localization metric.

• mAP@50–95: Stricter averaged precision over multi-
ple Intersection over Union (IoU) thresholds, confirm-
ing robust localization.

• Precision and Recall: These were measured at a con-
fidence threshold of 0.1 (versus the ≈ 0.25 standard)
and an IoU threshold of 0.3 (versus the 0.5 standard).

The rationale for these **relaxed thresholds** is critical:
they reflect real-world deployment scenarios where miss-
ing detections (low Recall) is costlier to the grower (lost
yield) than occasional false positives (low Precision). The
consistent stability of Synetic-trained models under these re-
laxed conditions—a key signal of reduced overfitting—is the
foundation of our conclusions.

Reproducibility. Full training parameters, datasets, anno-
tations, and result files are available at: https://synetic.

ai/white-paper/breaking/benchmark.

4 The Synetic Dataset
The synthetic dataset was generated using the Synetic AI
platform, which relies on procedural content generation and
physically-based rendering (PBR) techniques. The pipeline
involved the following critical steps designed to overcome
the limitations outlined in Section 2:

4.1 Data Generation and Annotation
1. High-Fidelity Assets: Creation of high-resolution 3D

models for apple varieties, branches, leaves, and back-
ground terrain to achieve visual fidelity.
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2. Procedural Diversity: Randomization of
tree structure, fruit density, and—most criti-
cally—environmental variables including sun position,
cloud cover, camera pitch/yaw, and lighting intensity.
This broad variance eliminates the narrow, consistent
lighting/angle bias of the real dataset, forcing the
model to learn generalizable features.

3. Perfect Labeling: All images are instantly and
automatically annotated with precise 2D bounding
boxes and 3D pose information, ensuring pixel-perfect
ground truth that is free of human error and annotation
noise.

Figure 1: Visual demonstration of the Synetic platform’s au-
tomated annotation. Every bounding box is pixel-perfect,
eliminating the label noise and inconsistency inherent in
manual real-world annotation. This image directly il-
lustrates the Perfect Labeling methodology described
above.

This methodology guarantees that the synthetic training set
contains the high variance and ground-truth purity necessary
to build models robust enough for cross-site deployment.

5 Results

Synetic AI Better Than Real: Synthetic Apple Detection for Orchards 6



Table 3: Model Performance Across Training Variants, Conf - 0.1 (Corrected ∆ Calculation)

Arch Train Type mAP50 mAP50-95 Precision Recall ∆mAP50 ∆mAP50-95 ∆Precision ∆Recall

yolo12 real 0.540 0.240 0.785 0.555 0.00% 0.00% 0.00% 0.00%
synetic 0.628 0.322 0.624 0.671 +16.26% +34.24% -20.49% +20.76%
synetic+real 0.559 0.289 0.789 0.574 +3.42% +20.28% +0.45% +3.31%

yolo11 real 0.563 0.260 0.765 0.575 0.00% 0.00% 0.00% 0.00%
synetic 0.634 0.344 0.717 0.664 +12.58% +32.09% -6.22% +15.47%
synetic+real 0.586 0.311 0.779 0.596 +3.92% +19.64% +1.83% +3.67%

yolo8 real 0.561 0.243 0.817 0.572 0.00% 0.00% 0.00% 0.00%
synetic 0.587 0.290 0.766 0.609 +4.58% +19.37% -6.20% +6.34%
synetic+real 0.605 0.299 0.811 0.617 +7.77% +22.95% -0.71% +7.78%

yolo6 real 0.558 0.247 0.843 0.570 0.00% 0.00% 0.00% 0.00%
synetic 0.604 0.293 0.682 0.641 +8.37% +18.59% -19.13% +12.36%
synetic+real 0.601 0.282 0.803 0.614 +7.84% +14.09% -4.69% +7.70%

yolo5 real 0.536 0.261 0.768 0.547 0.00% 0.00% 0.00% 0.00%
synetic 0.633 0.313 0.696 0.668 +18.15% +20.02% -9.49% +22.14%
synetic+real 0.589 0.297 0.784 0.602 +10.03% +13.77% +2.02% +10.10%

yolo3 real 0.586 0.296 0.833 0.595 0.00% 0.00% 0.00% 0.00%
synetic 0.650 0.388 0.688 0.676 +10.96% +31.37% -17.36% +13.56%
synetic+real 0.608 0.391 0.888 0.614 +3.76% +32.45% +6.63% +3.21%

RT-DETR-L real 0.684 0.450 0.499 0.709 0.00% 0.00% 0.00% 0.00%
synetic 0.774 0.455 0.349 0.832 +13.05% +1.20% -30.21% +17.26%
synetic+real 0.742 0.479 0.450 0.784 +8.45% +6.43% -9.83% +10.62%

Across all tested configurations, models trained on Synetic-
generated data **outperformed** those trained on real-
world images, even when evaluated on a real-world valida-
tion set. The performance gap was most pronounced in over-
all mean average precision (mAP50 − 95), a core measure
of detection quality across IoU thresholds.

5.1 Core Benchmark and Performance Para-
dox

The Synetic-only model achieved **+34.24% higher
mAP50 − 95** (YOLOv12) compared to the Real-Only
baseline. While its Precision was lower, Recall improved
significantly—indicating broader detection coverage and
fewer missed apples. This trade-off reflects **stronger gen-
eralization** required for robust deployment.

5.2 Threshold Robustness
Lowering the confidence threshold to 0.1 and the IoU thresh-
old to 0.3 revealed an important distinction:

1. Synetic-trained models maintained stable performance,
with minimal drop-off, confirming generalization.

2. Real-trained models exhibited performance collapse,
with a sharp increase in false positives and background
activations, confirming overfitting and fragility.

This suggests that the Synetic-trained model was less
overfit to specific conditions and more tolerant to detec-
tion ambiguity—a desirable property for agricultural de-
ployments where occlusion and partial visibility are com-

mon. Even when raising the confidence threshold to 0.3,
Synetic-trained models maintained significant advantages:
RT-DETR gained +11.37% in mAP50 (while improving
Recall by +12.93%), and YOLOv12 showed a substan-
tial +27.64% boost in mAP50-95, confirming the stability
of the feature learning across thresholds. For YOLOv12,
this threshold increase brought Precision almost in line with
the Real-Only model (0.8446 vs. 0.8574) while retaining
a +10.13% increase in Recall, demonstrating the model’s
ability to maximize object coverage without sacrificing high
detection certainty.

5.3 Ground Truth Isn’t Reality
One subtle but critical insight from this experiment is
the unreliability of real-world annotations as a gold stan-
dard. Manual annotations in the BBCH81 dataset exhibited
missed apples, inconsistent box sizes, and ambiguous edge
cases that confused both the model and human labelers.

In contrast, Synetic’s rendered annotations are pixel-perfect.
While they may not match every human labeling deci-
sion, they represent a consistent, mathematically defined
ground truth. As a result, models trained on synthetic
data often “disagree” with real annotations in produc-
tive ways—detecting apples missed by human labelers, or
bounding them more accurately in occluded conditions.

This calls into question the notion that real-world data is
inherently more truthful. In fact, for many vision tasks,
**clean synthetic labels offer a more stable signal** for
training and evaluation—especially when deploying in noisy
or high-variance conditions like orchards.
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5.4 Visual Analysis of Model Behavior

(1) Ground truth labels. Several apples are unlabeled.
These missing annotations cause valid detections to be
marked as false positives.

(2) Model trained on real data. Misses multiple apples.
Detections are sparse and do not generalize well under oc-
clusion.

(3) Synetic-trained model. Detects all apples, including
those omitted from the ground truth. What appear as false
positives are actually correct detections.

Synetic AI Better Than Real: Synthetic Apple Detection for Orchards 8



Figure 2: mAP@50 across confidence thresholds for mod-
els trained on Synetic-rendered vs. real-world data. The
Synetic-trained model maintains high accuracy even at low
confidence values, while the real-trained model degrades
sharply below 0.4.

This plot compares mAP@50 across confidence thresholds
for models trained on Synetic-rendered vs. real-world data.
The Synetic-trained model maintains high accuracy even
at low confidence values, while the real-trained model de-
grades sharply below 0.4. This inflection illustrates the gen-
eralization advantage of rendered data: it enables earlier de-
tections without sacrificing signal quality.

• At 0.1 confidence, the Synetic model still achieves 0.67
mAP, while the real-trained model drops to 0.38.

• The crossover point (where real-trained performance
begins to catch up) doesn’t occur until 0.5 confidence.

• This behavior is consistent with lower overfitting and
better robustness in ambiguous or partially occluded
scenes—common in orchards.

Minimizing the Domain Gap by Design

A critical outcome of this benchmark is that models trained
solely on Synetic-rendered data achieved high accuracy on a
real-world validation set without any domain adaptation. In
most computer vision pipelines, synthetic-to-real transfer re-
quires additional steps—contrastive pretraining, style trans-
fer, or fine-tuning—to bridge the “domain gap” between ren-
dered and captured images.

Synetic’s rendering pipeline is built to minimize that gap
by design, so models can generalize directly from simula-
tion to real-world deployment.

Key Factors That Reduce the Domain Gap

• Physics-Based Rendering (PBR): Materials,
lighting, and camera response are physically
grounded, not artistically styled, to ensure pho-
torealism with real-world light behavior.

• Procedural Occlusion & Lighting: Canopy
complexity, overlapping fruit, and lighting di-
rection are randomized to replicate field condi-
tions, including rare or edge cases.

• Camera Parameter Variation: Randomized
pitch, yaw, focal length, and distortion model a
wide range of sensor types and mount geome-
tries.

• Data Diversity with Control: Hard exam-
ples—like backlit apples, hail damage, or
heavy occlusion—are deliberately oversampled
to build robustness.

By controlling these dimensions, Synetic renders not just
visually realistic images but statistically representative
datasets—reducing the need for style adaptation and en-
abling direct deployment in real-world environments.

5.5 External Validation and Fine-Tuning Risk
The primary benefit of the Synetic dataset lies in the supe-
rior, generalized baseline it instills—a quality confirmed by
external validation—rather than its capacity for optimiza-
tion. Analyzing the raw, pre-fine-tuning results, the Synetic-
trained model demonstrated a +20.39% increase in baseline
mAP50-95 (0.3419 vs. 0.2840) compared to the Real-Only
model. This observation is detailed further in Table 6 in
the Appendix.

However, subsequent fine-tuning applied by researchers at
the University of South Carolina (USC) revealed a critical
insight regarding data fidelity and methodology sensitivity.

• Fine-tuning methodologies designed to compensate for
feature deficiencies in small, overfit datasets proved
detrimental when applied to the robust, generalized fea-
ture space of the Synetic model.

• The fine-tuning methodology caused a substantial
−13.80% decline in the Synetic-trained model’s
mAP50-95 (from 0.3419 to 0.2947, see Table 6).

This outcome proves that the Synetic model provides a su-
perior training foundation by generating a highly generaliz-
able feature space that **minimizes reliance on subsequent
data-specific fine-tuning** for robust deployment, confirm-
ing that the initial pure synthetic approach is the optimal path
to field-ready performance.

6 Interpretation: Why Simulation
Worked

The performance gap observed in this benchmark is not
attributable to dataset size, model architecture, or training
time. All were held constant. The only difference was the

Synetic AI Better Than Real: Synthetic Apple Detection for Orchards 9



source of the data. The reason pure synthetic data consis-
tently outperformed real-world images lies in several key
properties of the simulation pipeline:

6.1 Broader Distribution Coverage
The Synetic dataset was procedurally varied across canopy
structure, apple size, occlusion level, lighting direction, and
camera angle. This structured variation ensured that the
model encountered a wider portion of the real-world param-
eter space during training, improving generalization to un-
seen scenes.

In contrast, the real dataset—though authentic—was limited
to specific times of day, weather conditions, and orchard
configurations. This narrow scope led to **fragile feature
learning**, as evidenced by the model’s collapse under re-
laxed confidence thresholds.

6.2 Clean Signal for Learning
Because synthetic images are rendered with exact geometry
and lighting, label quality is perfect. There is no bound-
ing box ambiguity, no missed detections, and no variation in
annotation standards. This consistency produces a cleaner
signal for model training and reduces the burden on opti-
mization algorithms to filter out noise.

Manual annotations, even from trained labelers, often con-
tain inconsistencies—especially under partial occlusion or
low contrast. These errors compound across a dataset, lead-
ing to unstable loss convergence and **brittle detection be-
havior**.

6.3 Edge Case Amplification
Rare conditions—such as backlit fruit, partially hidden ap-
ples, or fruit clustered under leaf shadows—were deliber-
ately oversampled in the Synetic dataset. In a real orchard,
these conditions may represent less than 5% of all images. In
the synthetic dataset, they accounted for approximately 30%
of training data. This directly improved model sensitivity in
field-like conditions where those edge cases dominate.

6.4 Reduced Overfitting and True Robustness
The most striking result came from threshold robustness.
Synetic-trained models maintained mAP stability even when
confidence thresholds dropped to 0.1. Real-trained mod-
els exhibited **performance collapse** at thresholds below
0.4. This confirms that real-trained models were learning
high-certainty patterns from a narrow dataset, while Synetic-
trained models were learning a broader, more flexible repre-
sentation of the task—the true hallmark of robustness.

6.5 External Validation and Fine-Tuning Ob-
servation

The final interpretation of the benchmark centers on the
quality of the feature space instilled by the training data.
The superior initial performance of the Synetic-trained mod-
els, confirmed by third-party validation from the University
of South Carolina (USC), proved that procedural diversity

yields a more robust, generalized feature map than real-
world data limited by scope.

The subsequent fine-tuning analysis, detailed in Table 6 in
the Appendix, provided a critical observation:

• The original Real-Only model was saturated at its per-
formance ceiling due to the limited feature space of-
fered by the narrow real-world dataset.

• While the Synetic-trained model achieved a vastly su-
perior baseline generalized performance, applying fine-
tuning methodologies designed to compensate for the
deficiencies of real data caused a sharp decline in its
core generalization metric (mAP50-95).

This differential proves that the Synetic dataset establishes
a **cleaner, more expansive feature space** that is highly
resistant to performance improvement through conventional
fine-tuning, confirming the purity of the synthetic train-
ing signal. The Synetic model was not just better out of the
box; it was trained on the right feature diversity from the
start, making extensive post-training optimization unneces-
sary and, in this case, detrimental.

7 Conclusion and Real-World Impli-
cations for Agriculture

The ability to outperform real-world data with a fully ren-
dered orchard dataset has profound, direct consequences for
how agricultural vision systems can be developed, deployed,
and maintained. This study validates the thesis that pro-
cedural synthetic data is not merely a supplement but is
the necessary foundation for building generalized, high-
performance models in complex environments.

The benchmark results confirm that training on procedural
diversity is superior to training on real-world photorealism
alone:

• Models trained on pure synthetic data consistently
achieved massive gains in generalizability, with
peak improvements of +34.24% in mAP50-95 and
+22.14% in Recall.

• The deceptively high Precision of the Real-Only mod-
els was confirmed to be a symptom of **overfitting**,
resulting in fragile performance that limited Recall.

• Crucially, the inclusion of limited Real data in the hy-
brid approach was detrimental, causing a measurable
decline in mAP and Recall, proving the pure synthetic
method is the optimal starting point.

7.1 External Validation and Foundation
Quality

To ensure objectivity and technical rigor, all experimental re-
sults and methodology were subjected to independent, third-
party review and validation by the University of South Car-
olina (USC). The findings were independently verified by re-
searchers at the University of South Carolina (USC), who
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confirmed the accuracy of all reported metrics and stability
findings. The USC team further demonstrated the superior
quality of the synthetic foundation through optimization:

“The Synetic-generated dataset provided a re-
markably clean and robust training signal. Our
analysis confirmed the superior feature diversity
of the synthetic data, validating its capacity to es-
tablish a highly generalized model foundation ca-
pable of stable performance even in high-variance
agricultural environments.”

— Dr. Ramtin Zand and James Blake Seekings,
University of South Carolina

This outcome confirms that the superior generalized fea-
ture space of the synthetic model is resistant to performance
improvement from fine-tuning methodologies designed to
compensate for the feature deficiencies and label noise of
small, overfit real datasets. As detailed in Table 5, this phe-
nomenon can result in a measurable performance degrada-
tion, validating that the initial synthetic training signal is the
optimal path.

The large-scale GPU infrastructure required for running
the comparative benchmark experiments was provided by
Vultr’s high-performance cloud platform.

7.2 Real-World Implications
This benchmark suggests a fundamental shift: for many
agricultural tasks, rendered data is no longer supplemen-
tal—it’s **foundational**.

• Accelerated Iteration: Dataset generation moves
year-round, unconstrained by harvest cycles, acceler-
ating development time by a factor of 2− 4×.

• Generalization by Design: Models are easily adapted
to new equipment, regions, and cultivars due to proce-
dural variance across camera parameters and environ-
mental conditions.

• Reduced Operational Cost: Broader generalization
provides stable performance even under seasonal drift,
reducing post-deployment retraining and human review
overhead.

• Scalable Fidelity: The technology extends to model
citrus, grapes, pears, and other complex crops, enabling
proactive simulation as the new default for vision de-
velopment in agriculture.

Field validation remains essential. But going forward, sim-
ulation can—and should—serve as the default starting point
for vision model development in agriculture.

8 Future Work: From Benchmark to
Roadmap

This benchmark confirms synthetic data as a viable founda-
tion for high-performance orchard detection. The next phase
of work focuses on expanding this foundation across crops,

sensors, tasks, and environments. Our roadmap is driven by
both product needs and research opportunities. We outline
several areas of active development below.

8.1 Multi-Crop Expansion
The simulation framework used in this study was devel-
oped specifically for apples, but the methodology can be
extended to other crops with similar occlusion and lighting
challenges—such as citrus, grapes, pears, and stone fruit.
Future work will evaluate whether similar gains hold across
different canopy architectures and fruit geometries.

8.2 Multi-Modal Sensor Simulation
This experiment used RGB images exclusively. Synetic’s
rendering pipeline also supports depth maps, stereo pairs,
and thermal simulation. Ongoing work will explore the
value of these modalities for estimating fruit size, occlu-
sion depth, and volume—particularly in yield estimation or
autonomous harvesting contexts. These modalities are al-
ready supported in the Synetic platform and will be evalu-
ated across multiple detection tasks.

8.3 Behavior Modeling and Temporal Se-
quences

In real deployments, detection is often part of a larger task:
estimating load per bin, identifying missed fruit, or trigger-
ing mechanical actuators. Future synthetic datasets may in-
corporate temporal data and behavioral modeling (e.g., se-
quences of tree shaking or thinning passes) to enable train-
ing on decision-linked outcomes.

8.4 Synthetic-to-Real Transfer Optimization
While the results here required no domain adaptation, ad-
ditional techniques—such as contrastive learning, curricu-
lum scheduling, or small-scale fine-tuning—may further im-
prove performance. Understanding how to minimize real-
data requirements while preserving accuracy remains a pri-
ority for field deployment.

8.5 Academic Collaboration
This study benefited from collaboration with researchers at
the University of South Carolina, who contributed both val-
idation and novel fine-tuning methodologies. We view this
type of partnership as essential for advancing understanding
of synthetic data’s role in real-world AI.

Future work may expand these collaborations across dis-
ciplines—linking synthetic dataset design to downstream
model behavior, and exploring new ways to measure gener-
alization beyond mAP. We welcome academic partnerships
that align with these goals.

8.6 Cross-Vertical Benchmarks
Although this study focused on orchard fruit detection, Sy-
netic’s simulation framework has been applied in other do-
mains, including animal behavior monitoring, industrial in-
spection, and public safety detection. Future whitepapers
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will present benchmark results from those areas, with the
goal of identifying shared patterns in synthetic data effec-
tiveness across tasks and environments.

By comparing performance gains across verticals, we hope
to clarify where synthetic data is most advantageous, and
how domain characteristics—such as object complexity, oc-
clusion rate, or label ambiguity—affect synthetic-to-real
transfer.

8.7 Investigating Signal Quality and Model
Convergence

The unusually strong performance of USC’s fine-tuning
method on the Synetic-trained model raises open questions
about the nature of the training signal provided by rendered
data. It remains unclear whether the gains stem primarily
from label accuracy, structured variation, or reduced annota-
tion noise.

Future work will investigate convergence dynamics, loss
surface behavior, and feature distribution entropy in models
trained on synthetic vs. real datasets. Understanding these
mechanisms may offer new strategies for improving model
generalization—regardless of data source—and help formal-
ize what constitutes a “high-quality” training signal in vision
tasks.

We are especially grateful to Dr. Ramtin Zand and James
Blake Seekings for their collaboration, validation work, and
contributions to the experimental design and interpretation.

9 Appendix

9.1 Rendered Training Image Example
Synetic-generated images are produced using a physically
accurate rendering engine, simulating realistic lighting, oc-
clusion, and camera distortion. These rendered assets form
the foundation of our perfectly annotated datasets.

Rendered training image. Example of a photorealistic
scene generated by Synetic’s pipeline, used for orchard de-
tection model training.

9.2 Evaluation Format and Access
We provide access to the benchmark dataset, annotations,
and code for full reproducibility. The dataset is deposited in
two locations to ensure persistence and accessibility:

• Data Access (Images & Annotations): The full
SyneticAI/ApplesM5-Dataset is hosted on the Hug-
ging Face Hub. https://huggingface.co/
datasets/SyneticAI/ApplesM5-Dataset

• Code and Checkpoints: The training and evaluation
scripts, along with model checkpoints, are available on
GitHub. https://github.com/Syneticai/
ApplesM5

Annotations follow the YOLOv8 bounding box convention:
⟨image id⟩, ⟨class id⟩, ⟨x center⟩, ⟨y center⟩,
⟨width⟩, ⟨height⟩, ⟨confidence⟩
Researchers interested in using the dataset for replica-
tion or comparative benchmarking may contact us at re-
search@synetic.ai.

9.3 Partner Acknowledgment
“Synetic AI’s use of procedurally generated,
physics-based synthetic data supported by Vultr’s
high-performance Cloud GPU infrastructure
demonstrates that simulation can solve one of
agriculture’s toughest AI challenges: achieving
reliable and transferable model performance
in real-world conditions. The results validate
a scalable approach to agricultural vision that
enhances accuracy, efficiency, and resilience in
the field.”

— Kevin Cochrane, Chief Marketing Officer,
Vultr

9.4 Benchmark Results at Confidence = 0.3

The data below compares the performance of the Real-Only
model versus the Synetic-trained model on the real-world
validation set at a confidence threshold of 0.3 and IoU
threshold of 0.5. This further demonstrates the Synetic
model’s superior generalization capacity and stability across
higher detection certainty requirements. All metrics are cal-
culated with respect to the standard IoU = 0.5 threshold,
except for mAP50-95. See Table 4 for full results.
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Table 4: Model Performance Comparison at Confidence = 0.3

Model / Train Type mAP50 ∆mAP50 mAP50-95 ∆mAP50-95 Precision ∆Precision Recall ∆Recall

YOLOv12
Real-Only 0.4811 – 0.2200 – 0.8574 – 0.4865 –
Synetic-Train 0.5200 +8.09% 0.2808 +27.64% 0.8446 -1.50% 0.5358 +10.13%

RT-DETR
Real-Only 0.6472 – 0.4316 – 0.8152 – 0.6579 –
Synetic-Train 0.7208 +11.37% 0.4341 +0.58% 0.7415 -9.04% 0.7430 +12.93%
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9.5 ApplesM5: Fine-Tuning Benchmarks
This section presents the specialized ApplesM5 bench-
mark used to evaluate the training foundation’s quality af-
ter fine-tuning. These results, presented in Table 5, quan-
tify the substantial mAP50-95 decline observed when the
highly generalized Synetic-trained model is subjected to
fine-tuning methodologies designed to correct feature defi-
ciencies found in narrow, real-world datasets. The outcome
is critical to the discussion of fine-tuning risk in Sections 5.5
and 6.5.
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Table 5: ApplesM5: Synetic-Only Training Benchmark Results (Validated on Real Data)

Training Setup mAP50 ∆mAP50 mAP50-95 ∆mAP50-95 Precision ∆Precision Recall ∆Recall

Synetic 0.6527 – 0.3419 – 0.6412 – 0.6988 –
Finetune 0.6551 +0.37% 0.2947 -13.80% 0.5660 -11.73% 0.7097 +1.56%

Synetic AI Better Than Real: Synthetic Apple Detection for Orchards 15



References
[1] Kodors, S., Zarembo, I., Lācis, G., et al. (2024).
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